
GENERALIZED VIRTUAL DISPLACEMENTS 

(OBOBSBCBENNYE VIRTUAL'NYE PEREIESACBENIIA) 

PMM Vo1.23, No. 4, 1959, pp. 672-680 

B. G. KUZNETSOV 
(Tomsk) 

(Received 9 February 1959) 

The author proposes a generalization of the definition of virtual dis- 
placements, which could be applied to ideal constraints and also to certain 
other interactions of the points of a system and constraints. The virtual 
displacements would depend on the law of interaction: and for a certain 
special form of this law we have the commonly accepted definition of 
virtual displacements. 

1. Let us consider a system of N material points, whose positions at 
every instant of time t are determined by s = 3N generalized coordinates 

9,s a** # Q,, subject to 1 constraints 

(1.1) 

We assume here that the constraints may limit not only the positions 
of the points and their velocities, but the accelerations as well. The 
functions f. are assumed to be differentiable with respect to all their 
arguments. ‘!he forrmla (1.1) indicates concisely that each of fi’s could 
depend on all coordinates ql, . . . , q,, and on their derivatives up to the 
order j (it is of course possible that some of the fi’s would depend on 
the derivatives up to the order pi, 0 < p . < j 1. lhe integral or integro- 
differential constraints will not be consjdered. 

Indep&dently of the character of the constraints and the nature of 
the physical interaction of the points of the system, the equations of 
motion may be written in the form 

CYT d aT 
--- 

Rk+ Qk+ aqk _=o 
dt ag, (1.2) 

where Qb, R, and T are the generalized forces, reactions and the kinetic 
energy, respectively, with k = 1, 2, . ..) s. 

Consider the system of functions 
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in which the arbitrary differentiable functions q,(t) have the same 
dimension as the corresponding generalized coordinate 

small parameter a does not depend on t and could have 
qk; the infinitely 
a dimension. Mti- 

plying the k- th equation (1.2) by S $ k and adding, we obtain 

(1.4) 

It is clearly evident. that if the relationship (1.4) is valid for an 
arbitrary S$ 

t 
, then any system of equations (1.2) must also be valid. 

Equation (1.4 could serve as a general equation of mechanics for the 

most general kind of motion with completely arbitrary constraints. It is 
essential here that the quantities S$ k be completely arbitrary. lhey do 

not have to be variations of the generalized coordinates in the usual 

sense, and their dimensions do not have to be the same as the dimensions 
of the corresponding coordinates. 

Equations (1.4) contain the initially unknown reactions of constraints 

Rk, which have to be eliminated when equations (1.1) and the law of 
interaction of the points of the system with the constraints are to be 

used. It is well known how this is done in the case of ideal constraints. 

In the general case, the constraints are arbitrary, and there exists a 

set of quantities 6 $ k for which the relation 

i fik8+k = i [%k$+k+ 5 5 2 (y,,,k’ ss+k)] (1.5) 

k=l k=l rn=l g=1 

is satisfied at every instant of time. Here $ok are given functions of 
the time, of the coordinates, and of their time derivatives; these func- 

tions could be the resistance forces of the medium, or some supplement- 
ary active forces; the functions qSSkP will be explained later. lhe con- 

dition, which in the most general case of physical interactions determines 

the set a$,, may be written as 

(i =l, . . . .I) 

where Qi are certain functions differentiable with respect to all their 
arguments. These functions may not be completely arbitrary. Indeed, the 

quantities S$t, should be determinable with the accuracy of the multiplier 
a. Hence, Qi should be homogeneous functions of some order ni with respect 
to the whole set of the quantities 6 $k and their derivatives. In the 
simplest case ni = 1 (i = 1, . . . , I), ai would be homogeneous linear 
functions, and the relation (1.6) could be written as 

&+k = a+fik tt) (1.3) 
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i -$ aikm~6~k=0 (i = 1, . . . , I) (1.7) 

Besides, the r-th equation of the constraints (1.1) is determined with 

the accuracy of the constant multiplier Cr, therefore cbi and also ait. 

should be homogeneous functions of some order nir with respect to each 

variable of the group fr, af,/aqk, . . . 

We shall call the quantities S$,, which satisfy equations (1.61, or 

in special cases equations ( 1.7) the general virtual displacements, or 

siqly the 6 $-displacements. 

Generally speaking, the functions ai, aikm depend on all functions 

f fl and on all their partial derivatives up to a certain order, 

b:t ih’kpecial cases each of the Qi could depend only on one of the 

functions fi and on its derivatives. Different choices of Qi, aikn are 

mathematical expressions of different characters of the physical inter- 

action. For a definite law of the physical interaction, the functions oi 

and aibD assume a definite form, and conversely, choosing a certain form 

for Qi, and aik a~ we select at the same time some definite law for the 

physical interaction. ‘Ihe general case (1.6) is quite difficult, therefore 

from now on we shall study the virtual displacements (1.71, which, of 
course, limits the class of constraints to be considered. Nevertheless, 

this narrower class is sufficiently comprehensive, containing the ideal 

constraints and also the holonanic constraints with friction. 

2. Usually, the virtual displacements are determined from systems of 

algebraic equations, but the 6 $-displacements are determined from (1.71, 

which are not algebraic but differential equations. ‘Ihe 6 I)~ functions 

determined from these equations are in general completely different from 
the comnonly accepted virtual displacements. 

We shall derive now the equations of motion of a system with constraints 

(1.1) and conditions (1.7). 

‘Ihe general equation (1.4) with the conditions (1.5) and /3 > 0 will 

assume the form 

(when /I = 0, the station sign with respect to m is absent). kltiplying 
the ith equation (1.7) by an undetermined multiplier Xi, sunnning with 
respect to i and combining with (2.11, we obtain 
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(2.2) 

(2.3) 

which can be verified by performing the indicated operations, we shall 

transform the quantity hiaikm(dm/dt8)6$k. l’he functions c$,~P and the 

quantity /3 will be expressed now as 

(2.4) p = 7, (P,,,k’ = i (- 1)“s (hiaikm) (m > 0) 
i=l 

Substituting (2.3), (2.4) in (2.2) and combining similar terms, we 

obtain 

from which, after the usual reasoning, we obtain the system of equations 

which, together with (l.l), constitutes the full 

tions for (s + 2) functions qk, Ai. 

C&paring (1.4) with (2.5), we can show that 

(2.5) 

system of (s + 2) equa- 

Rk = yOK f i i (- l)mf$ (bikm) 

i=l m=o 

(2.6) 

which means that actually the reactions of constraints depend not only on 

the analytic form of the constraints, but also on the form of the functions 

a. .. lhe constraints with reactions (2.6) are of course not ideal. Be- 

sifies, the conventional name "constraints with frictionn becomes a mis- 

nomer here, because in the presence of conditions (1.7) there are possible 

also reactions, for which the total mechanical energy of the system in- 

creases, although the active forces are performing negative work. 

In order to verify equations (2.5). it is necessary to check whether 

conditions (1.5), which were essential in the derivations of these equa- 
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tions, are satisfied. To perform this, we shall substitute the values of 

R, from (2.6) in (X.51, replace p by y, and replace C&J’ by their values 

obtained from (2.4). As a result we shall have for y > 0 

(for y = 0 the second sum would be absent); hence, taking into account 
(2.3), we obtain the relation 

which must be satisfied on the strength of fl.7). The verification of 
equations (2.5) is completed. 

In general, equations (2.5) are of higher order than two. To determine 

now the arbitrary constants of integration we must know not only the 
initial generalized coordinates and velocities, but also their derivatives 

of higher order. All these quantities must, of course, satisfy the equa- 

tions of constraints (1.1) and also the relations obtained from successive 
differentiation of (1.1) with respect to time, since derivatives of 

higher order than j are needed for the determination of the constants. 

The number of arbitrary constants depds on the form of the functions 
a. I 

I& * 

As our constraints now are not ideal, we need not, in general, select 
new generalized coordinates in order to eliminate the holonanic constraints. 

Nevertheless, in certain cases, we could also obtain equations analogous 

to the Lagrange equations of the second kind. Let us assume that all the 
constraints are holonomic and y = 0; we shall select new generalized co- 

ordinates such that the constraints become identities. From equations 

(1.7) which become in this case 

(i = 1, . . . , I) 
P-7) 

we shall express 
shall substitute 

any quantities 6 $rb in terms of the remaining ones. We 
the obtained expressions for the dependent 6 $ L in 

equation (2.11, putting p = y = 0, that is, in the equation 

We shall express coefficients of the independent 8 gII, as functions of 
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the above mentioned new generalized coordinates and set them equal to 

zero. ‘lhe equations thus obtained would contain a minimum number of un- 
known functions. Besides, when y = 0, a similar transformation could be 
carried out for nonholonomic constraints of the form 

qi = cp,@, 91+19 . . . f Q,, Ql+l’ . . . ,hs) (i = 1 , . 1 4 (2.8) 

if +ok + Qk, T do not depend on ql, q2, . . . , 
their derivatives). 

3. We shall study some actual examples of 

functions aika be defined by the formulas 

afi 
aikm = - 

abmk 

bmk = ‘2 (In = 0, f)..., 7; i=l,..., I) (3.1) 

q, (but could depend on 

6 $J -displacements. let the 

Equations (1.71, which determine the b$-displacements, then become 

sji G i i afi 8” 
k=lm=o c%,, dtm ‘q, = ’ ti=‘*. . . 1 I) (3.2) 

where the symbol 8fi denotes an isochronous variation of f i, that is 

‘ii = a {& ji [tY qk + ‘qk9 $ (qk + 6qk), . . ’ & (qk + ‘qk)]} (3.3) 
a=0 

The quantities 6 $ R are determined by formulas (I. 31, and in this case 

it is convenient to replace them by qk. When j = 0, we obtain from (3.2) 
the conventional definition of virtual displacements for holonomic con- 

straints; for nonholonomic constraints (j = 1) the definition (3.2) differs 

from the conventional one. It must be mentioned though, that from the 
mathematical point of view, definition (3.2) is much more natural than 
the conventional one. It seems that constraints with a similar rule of 

interaction were not investigated previously, because it was not known 

how to construct equations (2.5). From the general point of view de- 
finition (3.2) and the conventional one are equally valid; they correspond 

in the case j = 1 to a different nature of interaction of the points in 

the system and of the constraints. 

Equations (2.5) become here 

The above equations, together with (1.11, form the complete system of 
(s + I) equations. We shall estimate now the number of independent arbi- 
trary constants, assuming that equations (3.4) are of 2jth order with 
respect to all the coordinates qk(j > 1). let us assume that among the 
constraints (1.1) there are rO h 1 o onomic constraints, r1 constraints which 
enforce limitations on positions and velocities, that is, constraints of 



Generalized virtual displacements 969 

the first order, r2 constraints of the second order, and finally rj con- 

straints of the jth order. We assume that rj f 0. Differentiating the 

constraints of the rth order (2 j- IU) times with respect to time, we ob- 

tain, together with (3.41, a system of (s + 21 equations of jth order 

with respect to the coordinates qk and of mth order with respect to Xi 

corresponding to the constraints of the mth order. The solution of the 
resulting system will depend on 

2js + i mrm 
lTl=l 

arbitrary constants, not all of them independent. Indeed, the resulting 
solution must satisfy all the constraints and all the relations obtained 

from the successive differentiation of the constraint equations with 

respect to time. Hence, the constraints of the mth order will give in 

addition r1(2j - a) independent relations. Thus, the number of independent 

arbitrary constants in our case would equal 

qi- i: (j-m)rm] 
m=O 

(3.5) 

If the order of the resulting equations with respect to any of the co- 

ordinates is lower (higher) than 2j, then the number of the independent 

constants is correspondingly lower (higher). 

‘lhe arbitrary constants (3.5) could be determined from the requirement 

that the system at two prescribed instants of time occupy a certain pre- 

scirbed position with prescribed velocities, accelerations, and so on, up 

to the (j - Z)th derivative inclusive, (j > 1). In particular, for holo- 

nomic constraints (j = 0) and nonholonomic (j = 1) we could prescribe two 

arbitrary positions of the system at two prescribed instants of time, which 

are consistent with the holonanic constraints. It should be mentioned 
that for the constraints of Chetaev [ 11 , that is, constraints for which 

(1.7) becomes (j = 11, 

(3.6) 

this could not be done. For the constraints (3.61, and with the same con- 
ditions otherwise, we obtain a solution which depends only on 2s - 2r, - 

r1 constants. When r1 > 0, then the number of disposable constants is less 
than 2(s - ro), consequently with the constraints (3.6) we could not pre- 
scribe arbitrarily two positions of the same system, if we take into 

account only the holonanic constraints. As far as we know this fact, so 

fundamental for the formulation of the Hamilton-Qstrogradski principle, 
has not been previously noticed. 

We shall consider now the case of cyclic coordinates for nonholonomic 
constraints of the first order (j = 1). Let us mention that the holonomic 
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constraints with conditions (3.21 become conventional ideal constraints; 
consequently, they could be eliminated by a suitable selection of general- 
ized coordinates. Let us assume that the holonomic constraints are already 
eliminated and the nonholonanic constraints are solved with respect to the 
generalized velocities qi, that is 

ri=(Ii- Y'i(& q&i_x" * 1 - ,Q,, Plqr7 ’ * 4,) = 0 v=*,...,g (3.7) 

Besides, let q5*i + Qk = Ui(i = 1, ..,, I), and let us assume that the 
remaining quantities @Ok + Qk and 7 do not depend on the cyclic coordi- 
nates ql, . . . . qf. Ihen equations (3.4) muld yield the system 

d &” dhi 
----7- 

dt aqi -i--g= 
o (i = 1, . . 1 ) 1) 

Solving the first group of equations (3.8) we find 

(f=i,...,f) (3.9) 

where ci are arbitrary constants.' 

Utilizing the function To = T(t,ql+l, . . . . q , &, l .*, #rt qll+l, 

l *., q,1 from the second group of equations (3.8f, we obtain the system 

analogous to the equations of ~~lygin. It should be mentioned that for 

ci 
= 0 fi= 1, 11.1 I) equations (3.101 coincide with the erroneously 

derived equations of Lindeloff [2].'Ihe Lindeloff equations refer to the 
motion of a rigid body on a plane without sliding, but his law of inter- 
action differs from that of Chaplygin and from the one Lindeloff himself 
had assumed. 

4. We shall verify the validity of the H~iltonJJstrogradski principle 
for the motion of a system with constraints (1.1) and conditions (3.2). 
For the sake of simplicity, we shall limit ourselves to a conservative 
system. We recall that we may prescribe IA derivatives (a > 0) of the 
generalized coordinates up to the fj - 11th order, which satisfy all cou- 
straints up to tj - 11th order inclusive, for two instants of the time, 
tl and tZ. This means that at these two instants of time we could set 
equal to zero all the ~~~q~/~tn(n = 0, 1, '**I 3 ’ - 1). In the case of the 
constraints (3.6) we could also set equal to zero all 6qkl that is, to 
prescribe positions for the system at two instants of time; in this last 
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case, however, the existence of the solution for every boundary condition 
is not guaranteed. 

‘Ihe Hamilton-Ostrogradski principle could be formulated as follows: 
the motion of a system actually taking place differs from all other 

possible motions consistent with the constraints (1.1) and with the same 

initial and final positions by the fact that the functional 

J - “j (L + i hJi) dt 
- \ 
11 i-1 

assumes a stationary value. Here { is the 
multipliers. To prove the principle it is 

Euler equations for the functional J with 

account also that 

lagrangian, A i are undetermined 
sufficient to conpare the 

equations (3.4) and take into 

($ Qk)_ =- ($ fQk)*=t = 0 
1 t 

(4.1) 

(m=O,l,_...,j---l) (4.2) 

Let us consider the interesting case of canonical variables, introduc- 
ing first new independent variables bmk(m = 0, 1, . ..) jl (see (3.1)) in 
the functional J, for which conditions (4.2) assune the form 

(f&,&t, = (sbmli)t=tt = 0 (m=O,i,...,j-1) (%ll~ == a g Q (t)) (4.3) 
\ 

In what follows we shall utilize the following obvious relation 

sbrnk = $sq, (4-d) 

lhe introduction of the additional conditions 

b db mk - z (m-i)k = 0 (m=1,2,...,j) 

will not change the extremun of the functional [ 31 . 

(4.5) 

Following the customary procedure, we shall seek the extremun of the 

functional J(b,,, b k, 
3 

. . . , b,c) with conditions (4.5) and also seek the 
absolute extreaum o the functional 

JI = 1 [L + hkiii + i e Pmk (& b(m-l)k - bmk>] dt (4.6) 

where p,k are 

It is easy 
tions for J,: 

11 i=l m=l k=l 

the undetermined Langrange multipliers. 

to determine them in the case j = 1 from the Euler aqua- 
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(4.7) 

From relations (4.7) and from equations (1.1) we shall write down the 

functions 

bi, = bi, (k qk, plkr - - - v Pjk) (r = 1,. . . ,a) 

hi = hi (tv qks pikr * * * 7 pjk) (i = 1 ,...,4 (4.8) 

Substituting the above values into (4.3) and denoting the quantity 

i P,kb,k - L - i hiji 

k=l i=l 

= H (t, qkv plk ) (J-9) 

we shall rewrite the functional J, in the form 

(4.10) 

Ear the functional J,, the Euler equations are the canonical Hmilton- 

ian equations 

dp,k aH 
--I dt = aqni 

dqk c3H 
dt = apk 

(4.11) 

We could apply to equations (4.11) the well-known methods of integra- 

tion without any essential changes. 

5. Example. We shall consider the motion of a material point of weight 

P with the following constraint on the velocity 

4,s + iL2 = a* = con& (5.1) 

(ql and 92 are Cartesian coordinates, the q2-axis is parallel to the 

gravity force). 

Solving the constraint equation with respect to the derivative of the 

cyclic coordinate q1 we obtain 

q1= *JfaY (5.2) 

Utilizing equation (3.8). putting +ok = 0. and noting that To = Po2/2g, 
where g is the acceleration due to gravity, we obtain 
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Here cl, c2, c3 are arbitrary constants. Utilizing the 
equation and integrating the expression for q1 we obtain 

constraint 

q1 = cd f y In [(Pt + ~2) -!- I/cl2 + (Pt + c2Pl 

In order to obtain the reaction we shall use equations 
that in our case 

(5.4) 

(3.6). noting 

The final results are 

P%& 
R1 - f g [Cl2 + (Pt f c#] ’ 

R%=-PP 
p*Cl il 

g IQ + (k-t + CzPl 
(5.5) 

The resulting motion could be interpreted as follows: suppose there is 
a rocket with two reaction motors. One of them supplies a constant force 
component R’ = P, which balances the force of gravity. The second motor 
supplies the reactive force 

P%lCl 
R” = g[c12 + (Pt + c2)2] 

along the normal to the trajectory and directed toward its concave side. 
The variation of the mass of the rocket is neglected. If we regard the 
constraint (5.1) as the Chetaev constraint, which means that we assume 
that the constraint imposes the following limitations 

&Ml + Q&r = 0 (5.6) 

then it is easily seen that the reaction of this constraint is always 
tangent to the trajectory. It should be mentioned, however, that the 
solution of this example with conditions (5.6) depends not on fqur, but 
only on three arbitrary constants, consequently the trajectory could not 
connect two arbitrarily prescribed points. 

6. Concluding, we shall present a simpler case for the determination 
of aikn from the prescribed law of interaction. Suppose that a material 

point moves in a plane with Cartesian coordinates q1 and q2, with the 

frictional constraint 

9 (Q17 42) = 0 (6-l) 

and the angle of friction r is a prescribed function of the coordinates, 
velocities and their higher derivatives. We shall assume that the reaction 
is directed along grad c$. In order to determine the quantities allo, a12o, 

we can construct the equations (y = 0): 

0 ‘p 
all aq, 

a+ + alao a92 = algradcplcosr, . 
. 

alloql +a,,“q, = - aq sin ‘c (6.2) 

where 
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A solution of equations (6.2) could be obtained with an accuracy witb- 
in an arbitrary coefficient, for example, in the form 

. . 89 *ap . 
ullo=q2 1 grad ‘p 1 cos 7-j-q - sin 7, ulPo = - q, I grad F 1 cos 7 - q - sin: 

892 341 
(6.3) 

ill e quantities a. rk n could be determined similarly for a three-dimen- 
sional space. 
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